HOMEWORK 8 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SECTION 3.10: Linear approximations and differentials
3.10.2. $L(x)=x-1$ (because $\ln (1)=0$, and $\left.\frac{1}{1}=1\right)$
3.10.11.
(a) $d y=\left(2 x \sin (2 x)+2 x^{2} \cos (2 x)\right) d x$
(b) $d y=\frac{1}{\sqrt{1+t^{2}}}\left(\frac{t}{\sqrt{1+t^{2}}}\right) d t=\frac{t}{1+t^{2}} d t$
3.10.15.
(a) $d y=\frac{1}{10} e^{\frac{x}{10}} d x$
(b) $d y=\frac{1}{10}(0.1)=0.01$
3.10.21. $\Delta(y)=y(5)-y(4)=\frac{2}{5}-\frac{2}{4}=-\frac{1}{10}=-0.1$
$d y=-\frac{2}{4^{2}}(1)=-\frac{1}{8}=-0.125$
3.10.25.
$\left.(8.06)^{\frac{2}{3}} \approx L(8.06)=8^{\frac{2}{3}}+\frac{2}{3}(8)^{(}-\frac{1}{3}\right)(8.06-8)=4+\frac{1}{3}(0.06)=4+0.02=4.02$
Here we used the fact that $f(x)=x^{\frac{2}{3}}$ and $a=8$
3.10.35. $l=2 \pi r=84$, so $r=\frac{84}{2 \pi}=\frac{42}{\pi}$. We know $d l=0.5$, so $2 \pi d r=0.5$, so $d r=\frac{0.5}{2 \pi}=\frac{1}{4 \pi}$
(a) $S=4 \pi r^{2}$, so $d S=8 \pi r d r=8 \pi \frac{42}{\pi} \frac{1}{4 \pi}=\frac{84}{\pi}$. Also the relative error is $\frac{d S}{S}=\frac{8 \pi r d r}{4 \pi r^{2}}=\frac{2 d r}{r}=\frac{1}{2 \pi} \times \frac{\pi}{42}=\frac{1}{84} \approx 0.012$
(b) $V=\frac{4}{3} \pi r^{3}$, so $d V=4 \pi r^{2} d r=4 \pi \frac{42^{2}}{\pi^{2}} \times \frac{1}{4 \pi}=\frac{1764}{\pi^{2}} \approx 179$. Also the relative error is $\frac{d V}{V}=\frac{4 \pi r^{2} d r}{\frac{4}{3} \pi r^{3}}=\frac{3 d r}{r}=\frac{\frac{3}{4 \pi}}{\frac{42}{\pi}}=\frac{3}{168}=\frac{1}{56} \approx 0.018$
3.10.40. $d F=4 k R^{3} d R$, so:

$$
\frac{d F}{F}=\frac{4 k R^{3} d R}{F}=\frac{4 k R^{3} d R}{F}=\frac{4 k R^{3} d R}{k R^{4}}=4 \frac{d R}{R}
$$

And when $\frac{d R}{R}=0.05, \frac{d F}{F}=4(0.05)=0.2$

[^0]
Section 3.11: Hyperbolic functions

3.11.9.

$$
\cosh (x)+\sinh (x)=\frac{e^{x}+e^{-x}}{2}+\frac{e^{x}-e^{-x}}{2}=\frac{e^{x}+e^{-x}+e^{x}-e^{-x}}{2}=\frac{2 e^{x}}{2}=e^{x}
$$

3.11.11. Just expand out the right-hand-side and use the fact that $\sinh (x)=$ $\frac{e^{x}-e^{-x}}{2}, \cosh (y)=\frac{e^{y}-e^{-y}}{2}, \cosh (x)=\frac{e^{x}+e^{-x}}{2}$ and $\sinh (y)=\frac{e^{y}-e^{-y}}{2}$

3.11.15.

$2 \sinh (x) \cosh (x)=2 \frac{e^{x}-e^{-x}}{2} \frac{e^{x}+e^{-x}}{2}=\frac{2}{4}\left(e^{x}-e^{-x}\right)\left(e^{x}+e^{-x}\right)=\frac{1}{2}\left(e^{2 x}-e^{-2 x}\right)=\frac{e^{2 x}-e^{-2 x}}{2}=\sinh (2 x)$
3.11.21. $\sinh (x)=\frac{4}{3}$ (use the fact that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ and the fact that $\sinh (x)>0$ when $x>0)$.

Then you get $\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{\frac{4}{3}}{\frac{5}{3}}=\frac{4}{5}, \operatorname{sech}(x)=\frac{1}{\cosh (x)}=\frac{3}{5}$, etc.
3.11.23(a). 1 (use $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ and factor out e^{x} from the numerator and the denominator)
3.11.26. This is very similar to example 3 on page 257. However, there is a subtle point involved, check out the document 'Subtle point in 3.11 .26 ' for more info!
3.11.29(a)(b). This is also very similar to example 4 on page 257. For (a), use the fact that $\cosh \left(\cosh ^{-1}(x)\right)^{2}-\sinh \left(\cosh ^{-1}(x)\right)^{2}=1$ and $\cosh \left(\cosh ^{-1}(x)\right)=x$. Also, you'll need to fact that $\sinh \left(\cosh ^{-1}(x)\right) \geq 0$ (and this is because $\cosh ^{-1}(x) \geq 0$ by definition, and $\sinh (x) \geq 0$ if $x \geq 0$). (b) is even easier, use the fact that: $1-\tanh \left(\tanh ^{-1}(x)\right)^{2}=\operatorname{sech}\left(\tanh ^{-1}(x)\right)^{2}$ and $\tanh \left(\tanh ^{-1}(x)\right)=x$.
3.11.31. $f^{\prime}(x)=\sinh (x)+x \cosh (x)-\sinh (x)=x \cosh (x)$
3.11.39. $y^{\prime}=\frac{1}{1+\tanh ^{2}(x)}\left(\operatorname{sech}^{2}(x)\right)=\frac{\operatorname{sech}^{2}(x)}{1+\tanh ^{2}(x)}$

Section 4.1: Maximum and Minimum Values

4.1.6.

- Absolute maximum: Does not exist (NOT 5)
- Absolute minimum: $f(4)=1$
- Local minimum: $f(2)=2, f(4)=1$
- Local maximum: $f(3)=4, f(6)=3$
4.1.7, 4.1.10. Ask me about that during office hours!
4.1.38. $-1,1\left(g^{\prime}\right.$ does not exist), $0\left(\right.$ makes $\left.g^{\prime}(c)=0\right)$
4.1.39. $0\left(F^{\prime}\right.$ does not exist), $4, \frac{8}{7}\left(\right.$ makes $\left.F^{\prime}(c)=0\right)$
4.1.51. Candidates: $f(-2)=11, f(3)=66$ (endpoints), $f(0)=3, f(-1)=2$, $f(1)=2$. Absolute maximum: $f(3)=66$, Absolute minimum: $f(-1)=f(1)=2$
4.1.57. See attached document 'Solution to 4.1.57'

[^0]: Date: Monday, March 14th, 2011.

